An offline-online homogenization strategy to solve quasilinear two-scale problems at the cost of one-scale problems
نویسندگان
چکیده
منابع مشابه
An offline-online homogenization strategy to solve quasilinear two-scale problems at the cost of one-scale problems
Inspired by recent analyses of the finite element heterogeneous multiscale method and the reduced basis technique for nonlinear problems, we present a simple and concise finite element algorithm for the reliable and efficient resolution of elliptic or parabolic multiscale problems of nonmonotone type. Solutions of appropriate cell problems on sampling domains are selected by a greedy algorithm ...
متن کاملSparse Two-Scale FEM for Homogenization Problems
We analyze two-scale Finite Element Methods for the numerical solution of elliptic homogenization problems with coefficients oscillating at a small length scale ε 1. Based on a refined two-scale regularity on the solutions, two-scale tensor product FE spaces are introduced and error estimates which are robust (i.e. independent of ε) are given. We show that under additional two-scale regularity ...
متن کاملTwo-Scale FEM for Homogenization Problems
The convergence of a two-scale FEM for elliptic problems in divergence form with coefficients and geometries oscillating at length scale ε " 1 is analyzed. Full elliptic regularity independent of ε is shown when the solution is viewed as mapping from the slow into the fast scale. Two-scale FE spaces which are able to resolve the ε scale of the solution with work independent of ε and without ana...
متن کاملUsing BOINC Desktop Grid to Solve Large Scale SAT Problems
Many practically important combinatorial problems can be efficiently reduced to a problem of Boolean satisfiability (SAT). Therefore, the implementation of distributed algorithms for solving SAT problems is of great importance. In this article we describe a technology for organizing desktop grid, which is meant for solving SAT problems. This technology was implemented in the form of a volunteer...
متن کاملOn how to solve large-scale log-determinant optimization problems
We propose a proximal augmented Lagrangian method and a hybrid method, i.e., employing the proximal augmented Lagrangian method to generate a good initial point and then employing the Newton-CG augmented Lagrangian method to get a highly accurate solution, to solve large-scale nonlinear semidefinite programming problems whose objective functions are a sum of a convex quadratic function and a lo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Numerical Methods in Engineering
سال: 2014
ISSN: 0029-5981
DOI: 10.1002/nme.4682